10,081 research outputs found

    Variation of discrete spectra for non-selfadjoint perturbations of selfadjoint operators

    Full text link
    Let B=A+K where A is a bounded selfadjoint operator and K is an element of the von Neumann-Schatten ideal S_p with p>1. Let {\lambda_n} denote an enumeration of the discrete spectrum of B. We show that \sum_n \dist(\lambda_n, \sigma(A))^p is bounded from above by a constant multiple of |K|_p^p. We also derive a unitary analog of this estimate and apply it to obtain new estimates on zero-sets of Cauchy transforms.Comment: Differences to previous version: Extended Introduction, new Section 5, additional references. To appear in Int. Eq. Op. Theor

    Entanglement transformation with no classical communication

    Full text link
    We present an optimal scheme to realize the transformations between single copies of two bipartite entangled states without classical communication between the sharing parties. The scheme achieves the upper bound for the success probabilities [PRA 63, 022301 (2001), PRL 83, 1455 (1999)] of generating maximally entangled states if applied to entanglement concentration. Such strategy also dispenses with the interaction with an ancilla system in the implementation. We also show that classical communications are indispensable in realizing the deterministic transformations of a single bipartite entangled state. With a finite number of identical pairs of two entangled bosons, on the other hand, we can realize the deterministic transformation to any target entangled state of equal or less Schmidt rank through an extension of the scheme.Comment: published versio

    Upper bounds on entangling rates of bipartite Hamiltonians

    Full text link
    We discuss upper bounds on the rate at which unitary evolution governed by a non-local Hamiltonian can generate entanglement in a bipartite system. Given a bipartite Hamiltonian H coupling two finite dimensional particles A and B, the entangling rate is shown to be upper bounded by c*log(d)*norm(H), where d is the smallest dimension of the interacting particles, norm(H) is the operator norm of H, and c is a constant close to 1. Under certain restrictions on the initial state we prove analogous upper bound for the ancilla-assisted entangling rate with a constant c that does not depend upon dimensions of local ancillas. The restriction is that the initial state has at most two distinct Schmidt coefficients (each coefficient may have arbitrarily large multiplicity). Our proof is based on analysis of a mixing rate -- a functional measuring how fast entropy can be produced if one mixes a time-independent state with a state evolving unitarily.Comment: 14 pages, 4 figure

    AR Sco as a possible seed of highly magnetised white dwarf

    Full text link
    We explore the possibility that the recently discovered white dwarf pulsar AR Sco acquired its high spin and magnetic field due to repeated episodes of accretion and spin-down. An accreting white dwarf can lead to a larger mass and consequently a smaller radius thus causing an enhanced rotation period and magnetic field. This spinning magnetic white dwarf temporarily can inhibit accretion, spin down, and, eventually, the accretion can start again due to the shrinking of the binary period by gravitational radiation. A repeat of the above cycle can eventually lead to a high magnetic field white dwarf, recently postulated to be the reason for over-luminous type Ia supernovae. We also point out that these high magnetic field spinning white dwarfs are attractive sites for gravitational radiation.Comment: 7 pages including 4 figures; accepted for publication in MNRA

    Taming computational complexity: efficient and parallel SimRank optimizations on undirected graphs

    Get PDF
    SimRank has been considered as one of the promising link-based ranking algorithms to evaluate similarities of web documents in many modern search engines. In this paper, we investigate the optimization problem of SimRank similarity computation on undirected web graphs. We first present a novel algorithm to estimate the SimRank between vertices in O(n3+ Kn2) time, where n is the number of vertices, and K is the number of iterations. In comparison, the most efficient implementation of SimRank algorithm in [1] takes O(K n3 ) time in the worst case. To efficiently handle large-scale computations, we also propose a parallel implementation of the SimRank algorithm on multiple processors. The experimental evaluations on both synthetic and real-life data sets demonstrate the better computational time and parallel efficiency of our proposed techniques

    A matrix product state based algorithm for determining dispersion relations of quantum spin chains with periodic boundary conditions

    Get PDF
    We study a matrix product state (MPS) algorithm to approximate excited states of translationally invariant quantum spin systems with periodic boundary conditions. By means of a momentum eigenstate ansatz generalizing the one of \"Ostlund and Rommer [1], we separate the Hilbert space of the system into subspaces with different momentum. This gives rise to a direct sum of effective Hamiltonians, each one corresponding to a different momentum, and we determine their spectrum by solving a generalized eigenvalue equation. Surprisingly, many branches of the dispersion relation are approximated to a very good precision. We benchmark the accuracy of the algorithm by comparison with the exact solutions of the quantum Ising and the antiferromagnetic Heisenberg spin-1/2 model.Comment: 13 pages, 11 figures, 5 table

    Time Optimal Control of Coupled Qubits Under Non-Stationary Interactions

    Full text link
    In this article, we give a complete characterization of all the unitary transformations that can be synthesized in a given time for a system of coupled spin-1/2 in presence of general time varying coupling tensor. Our treatment is quite general and our results help to characterize the reachable set at all times for a class of bilinear control systems with time varying drift and unbounded control amplitude. These results are of fundamental interest in geometric control theory and have applications to control of coupled spins in solid state NMR spectroscopy.Comment: 4 page

    Constructing optimal entanglement witnesses. II

    Get PDF
    We provide a class of optimal nondecomposable entanglement witnesses for 4N x 4N composite quantum systems or, equivalently, a new construction of nondecomposable positive maps in the algebra of 4N x 4N complex matrices. This construction provides natural generalization of the Robertson map. It is shown that their structural physical approximations give rise to entanglement breaking channels.Comment: 6 page

    Convex Trace Functions on Quantum Channels and the Additivity Conjecture

    Full text link
    We study a natural generalization of the additivity problem in quantum information theory: given a pair of quantum channels, then what is the set of convex trace functions that attain their maximum on unentangled inputs, if they are applied to the corresponding output state? We prove several results on the structure of the set of those convex functions that are "additive" in this more general sense. In particular, we show that all operator convex functions are additive for the Werner-Holevo channel in 3x3 dimensions, which contains the well-known additivity results for this channel as special cases.Comment: 9 pages, 1 figure. Published versio
    corecore